bonjour, je n'arrive pas à cet exercice: montrer que l'inéquation x³-2x²+4 ≥ x+2 est équivalente à (x-2)(x²-1)≥0 Merci d'avance vous m'aideriez vraiment beaucou
Mathématiques
tictac78
Question
bonjour, je n'arrive pas à cet exercice: montrer que l'inéquation x³-2x²+4 ≥ x+2 est équivalente à (x-2)(x²-1)≥0
Merci d'avance vous m'aideriez vraiment beaucoup
Merci d'avance vous m'aideriez vraiment beaucoup
2 Réponse
-
1. Réponse aliciapage2004
Bonsoir,
x^3-2x^2+4 >x+2
x^3-2x^2+4-x-2>0
x^3-2x^2+2-x>0
x^2(x-2)-(x-2)>0
(x-2)(x^2-1)>0 -
2. Réponse dalalthecleverest
Bonsoir :)
Réponse en explications étape par étape :
- Question : Montrer que l'inéquation " x³ - 2x² + 4 ≥ x + 2 " est équivalente à " (x - 2)(x² - 1) ≥ 0 " :
x³ - 2x² + 4 ≥ x + 2
x³ - 2x² + 4 - x - 2 ≥ 0
x³ - 2x² - x + 2 ≥ 0
x²(x - 2) - (x - 2) ≥ 0
D'où : (x - 2)(x² - 1) ≥ 0 ⇔ x³ - 2x² + 4 ≥ x + 2
Voilà